If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-16y-71=0
a = 1; b = -16; c = -71;
Δ = b2-4ac
Δ = -162-4·1·(-71)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-6\sqrt{15}}{2*1}=\frac{16-6\sqrt{15}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+6\sqrt{15}}{2*1}=\frac{16+6\sqrt{15}}{2} $
| 3y/2-y/3=5(y-4) | | 4(2m-1)=36-2m | | 7(m-2)=2(m+3) | | t+18=28 | | 46=4y | | 11+y-4y=29 | | 2(5p-3)=30 | | 14+6x=-32 | | -12y+8(23+1.5y)=18 | | 2j-1.10=j-3.05 | | f(70)=0.81(70)+168.3 | | 224x-168=290x+120 | | -3b+6=12+3b | | 3(5x+2)=2(4+3x) | | 5(g+6)=3(g-4) | | 6m-10=3m-5 | | 2(3 | | 2(3 | | 15y-12=11y+48 | | 30 | | t-2+3t=3(3t-9) | | x+1+2x+3x+4=19 | | 10x/11-3x/2=33×-x/2+7 | | 7d+5d=29 | | 7m-10=3(m+2) | | D=200-3t^2 | | 2x-7=3(2x-5) | | 4x-7-3x=24 | | 6x+5=10+5x5x+10 | | -4x=16+2x | | 12c-10=7c+30 | | 22x–2=42* |